NWA 7034 (Black Beauty)
Click the microscope button to view a thin section for this sample.
Click the microscope button to view a thin section for this sample.

Fact sheet

NWA 7034 (Black Beauty)

NWA 7034 (otherwise known as Black Beauty) is unique from other martian meteorites and was found in the Sahara Desert in 2011. It is 2 billion years old. Its martian origin was confirmed by pyroxene analyses (Fe/Mn ratios)and noble gas measurements that match measurements of the martian atmosphere. This meteorite is a breccia with a basaltic bulk composition and initially classified as a porphyritic basaltic monomict breccia clasts containing a wide variety of textures and include gabbros, quenched melts, and oxide rich reaction spherules. Other portions of the breccia contain plutonic lithic clasts such as monzonites and norites, basalts, and impact melt clasts. This is a very heterogeneous breccia!

Initial studies of NWA 7034 determined that the meteorite's bulk composition coincides with the composition of the average martian crust determined from mission data. This bulk composition also matches some of the rocks and soils measured in Gusev Crater by the Mars Exploration Rovers (MER) and in fact, this meteorite represents the strongest link between a martian meteorite and the geochemistry of the martian surface determined by remote sensing.

This virtual microscope is unusual in containing a three element combination x-ray map, where P, Mg and Al have been assigned to the red, green and blue channels respectively. Using this map it is possible to easily see the normally difficult to see phosphate minerals. Thanks to Santos et al. for permission to include the map here.

A. R. Santos, C. B. Agee, F. M. McCubbin, C. K. Shearer, P. V. Burger, R. Tartese & M. Anand (2015) Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust. Geochim. Cosmochim. Acta, 157, 56-85.

32.630701, -5.888672
About this collection

This collection of meteorites includes Shergottites, Nakhlites and Chassignites (or SNC meteorites) which originate from the surface of the planet Mars.

They carry unique signals of the surface of the planet that allows scientists to study the composition and age of Martian rocks. The collection includes a sample of the famous ALH84001 meteorite, evidence from which was used in 1996 to begin the debate of 'life on Mars?'. 


Sample details

Collection: Martian Meteorites
Rock-forming mineral
Category guide  
Category Guide
Refers to any word or phrase that appears in the individual rock names. Names are generally descriptive; they allow users to search for broad terms like ‘granite’ as well as more specific names such as ‘breccia’. However, the adjacent descriptions of the specimens captures a wider range of general words and phrases and is a more powerful search tool.
Refers to any word or phrase that appears anywhere in the descriptions of the specimens
Accessory minerals
Minerals that occur in very low abundance in a rock. They are usually not visible with the naked eye and contribute perhapssver, they often dominate the rare elements such as platinum group metals.
Rock-forming minerals
Minerals that make up the bulk of all rock samples and are also the ones used in rock classi?cation.
Selecting one or more period, for example 'Jurassic'.
A term used to group together related samples that are not already gathered into a single Collection. For instance, there is a ‘SW England granites’ theme that includes such rock types as granite, hydrothermal breccia, skarn and vein samples.
A general term used to label a rock sample. It is a useful way of grouping similar samples throughout a collection. Category names are often, but not exclusively, common rock names (e.g. granite, basalt, dolerite, gabbro, greisen, skarn, gneiss, amphibolite, limestone, sandstone).
The owner of the sample that appears in the collection. For example, NASA owns all the samples that appear in the Moon Rocks collection
We would like to thank the following for the use of this sample: